Piśmiennictwo
1. Cloez MS. Étude chimique de l’eucalyptol. Comptes Rendus 1870;70:687-90
2. Dhakad AK, Pandey VV, Beg S, et al. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J Sci Food Agric 2018;98:833-48
3. Góra J, Lis A. Najcenniejsze olejki eteryczne. Część I i II. Łódź: Wydawnictwo Politechniki Łódzkiej, 2012
4. Wińska K, Mączka W. Farmakologiczne właściwości 1,8-cyneolu (eukaliptolu) w chorobach układu oddechowego. Część 1. Med Trib 2020;07-08:1-4
5. Wińska K, Mączka W. Farmakologiczne właściwości 1,8-cyneolu (eukaliptolu) w chorobach układu oddechowego. Część 2. Med Trib 2020;09-10:47-49
6. ChPL. Charakterystyka Produktu Leczniczego – Soledum forte, 200 mg, kapsułki dojelitowe, miękkie. https://rejestrymedyczne.ezdrowie.gov.pl/api/rpl/medicinal-products/41288/characteristic
7. WHO. https://www.whocc.no/atc_ddd_index/?code=R05CA&showdescription=no
8. Cai ZM, Pen JQ, Chen Y, et al. 1,8-Cineole: a review of source, biological activities, and application. Journal of Asian Natural Products Research 2021; 23(10). https://doi-1org-100001acp0001.han3.wum.edu.pl/10.1080/10286020.2020.1839432
9. Fal AM, Babicki M, Brożek-Mądry E i wsp. Diagnostyka i leczenie wybranych infekcji oraz stanów zapalnych dróg oddechowych. Wytyczne dla lekarzy POZ. Lekarz POZ 2021;7(5):325-53
10. Fal AM, Kuchar E, Zaremba M i wsp. Zasady racjonalizacji terapii antybiotykowych w schorzeniach układu oddechowego i moczowego. Medical Tribune 2022;5:3-18
11. Vogelmeier C, Buhl R, Burghuber O, et al. Guideline for the diagnosis and treatment of COPD patients – issued by the German Respiratory Society and the German Atemwegsliga in Cooperation with the Austrian Society of Pneumology. Pneumologie 2018;72(4):253-308
12. Duisken M, Sandner F, Blfmeke B, et al. Metabolism of 1,8-cyneole by human cytochrome P450 enzymes: Identification of a new hydroxylated metabolite. Biochim Biophys Acta 2005;1722:304-11
13. Azerad R. 1,8-Cineole: Chemical and biological oxidation reactions and products. ChemPlusChem 2014;79:634
14. Horst K, Rychlik M. Quantification of 1,8-cyneole and of its metabolites in humans using stable isotope dilution assays. Mol Nutr Food Res 2010;54:1515-29
15. Miyazawa M, Shindo M, Shimada T. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from Eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab Disp 2001;29:200-5
16. Juergens LJ, Rackéb K, Tuleta I, et al. Anti-inflammatory effects of 1,8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma? Synergy 2017;5:1-8
17. Beauchamp J, Kirsch F, Buettner A. Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line protontransfer-reaction mass spectrometry after ingestion of eucalyptol containing capsules. J Breath Res 2010;4:026006
18. Galan DM, Ezeudu NE, Garcia J, et al. Eucalyptol (1,8-cineole): An underutilized ally in respiratory disorders? J Essent Oil Res 2020;32:103-10
19. Kirsch F, Buettner A. Characterisation of the metabolites of 1,8-cineole transferred into human milk: Concentrations and ratio of enantiomers. Metabolites 2013;3:47-71
20. Kirsch F, Horst K, Röhrig W, et al. Tracing metabolite profiles in human milk: Studies on the odorant 1,8-cineole transferred into breast milk after oral intake. Metabolomics 2013;9:483-96
21. Unger M, Frank A. Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography/mass spectrometry and automated online extraction. Rapid Commun Mass Spectrom 2004;18:2273-81
22. Zhang W, Lim LY. Effects of spice constituents on P-gp-mediated transport and CYP3A4-mediated metabolism in vitro. Drug Metab Dispos 2008;36(7):1283-90
23. De-Oliveira ACAX, Fidalgo-Neto AA, Paumgartten FJR. In vitro inhibition of liver monooxygenases by β-ionone, 1,8-cineole, (−)-menthol and terpineol. Toxicology 1999;135:33-41
24. Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain; a review. Curr Drug Metab 2001;2:245-63
25. Wang H, Tompkins LM. CYP2B6: New insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 2008;9:598-610
26. Santos FA, Silva RM, Campos AR, et al. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol 2004;42(4):579-84
27. Santos FA, Silva RM, Tome AR, et al. 1,8-Cineole protects against liver failure in an in-vivo murine model of endotoxemic shock. Pharm Pharmacol 2001;53:505
28. Santos FA, Rao VS. 1,8-cineol, a food flavoring agent, prevents ethanol-induced gastric injury in rats. Dig Dis Sci 2001;46(2):331-7
29. Lima PR, de Melo TS, Carvalho KM, et al. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB activity in mice. Life Sci 2013;92(24-26):1195-201
30. Murata S, Ogawa K, Matsuzaka T, et al. 1,8-Cineole Ameliorates Steatosis of Pten Liver Specific KO Mice via Akt Inactivation. Int J Mol Sci 2015;16:12051-63
31. Woroń J. Stosowanie niesteroidowych leków przeciwzapalnych u pacjentów z chorobą zwyrodnieniową stawów a ryzyko działań niepożądanych ze strony przewodu pokarmowego. Lekarz POZ 2019;5:395-401
32. Caldas RGF, da Silva Oliveira AR, Araújo AV, et al. Gastroprotective Mechanisms of the Monoterpene 1,9-Cineole (Eucalyptol). PLoS One 2015;10:e0134558
33. Zhihui J, Xiao G, Kunpeng Z, et al. The Essential Oils and Eucalyptol from Artemisia vulgaris L. Prevent Acetaminophen-Induced Liver Injury by Activating Nrf2-Keap1 and Enhancing APAP Clearance Through Non-Toxic Metabolic Pathway. Frontiers in Pharmacology 2019;10. https://doi.org/10.3389/fphar.2019.00782
34. Nascimento NR, Refosco RM, Vasconcelos EC, et al. 1,8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle. J Pharm Pharmacol 2009;61:361-6
35. Steinegger E, Hänsel R. Textbook of Pharmacognosy and Phytopharmacy. Berlin, Heidelberg, New York: Springer-Verlag 1988:329-331
36. Gessner O, Orzechowski G. Toxic- and medicinal plants in middle Europe. Heidelberg: Carl Winter Universitätsverlag 1974:231-330
37. Barnes PJ, Ito K, Adcock IM. Corticosteroid resistance in chronic obstructive disease: inactivation of histone deacetylase. Lancet 2004;363:731-3
38. Juergens UR, Dethlefsen U, Steinkamp G, et al. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003;97(3):250-6
39. Worth H, Schacher C, Dethlefsen U. Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir Res 2009;10(1):69-76
40. Worth H, Dethlefsen U. Patients with Asthma Benefit from Concomitant Therapy with Cineole: A Placebo-Controlled, Double-Blind Trial. Journal of Asthma 2012;49(8):849-53
41. Kardos P, Goldenstein K, Klimek L, et al. Early cineole administration during common cold reduces severity and promotes faster symptom decline compared to delayed treatment. Poster presented at: European Respiratory Society (ERS) International Congress, 4-6/09/2022, Barcelona, Spain 2022
42. Bastos VP, Gomes AS, Lima FJ, et al. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged Guinea pigs. Basic Clin Pharmacol Toxicol 2011;108:34-9
43. Ciftci O, Ozdemir I, Tanyildizi S, et al. Antioxidative effects of curcumin, beta-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats’ liver. Toxicol Ind Health 2011;27:447-53
44. Juergens UR, Stöber M, Vetter H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur J Med Res 1998;3:508-10
45. Juergens UR, Stober M, Schmidt-Schilling L, et al. Anti-inflammatory effects of eucalyptol (1,8-cineole) in bronchial asthma: Inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res 1998;3:407-12
46. Juergens UR. Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res (Stuttg) 2014;64(12):638-46
47. Suissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2012;67:957-63
48. Kaspar P, Repges R, Dethlefsen U, et al. Secretolytics in comparison. Change of muco-ciliar frequency and lung-function following therapy with cineole and ambroxol. Atemw-Lungenkrkh 1994;20:605-14
49. Habich G, Repges R. Chronic obstructive airway diseases. Cineole as medication useful and approved. Therapiewoche 1994;44:356-65
50. Wittmann M, Petro W, Kasper P, et al. Therapy of chronic obstructive airway diseases with secretolytics. Atemw-Lungenkrkh 1998;24:67-74
51. Sudhoff H, Klenke C, Greiner JFW, et al. 1,8-Cineol Reduces Mucus-Production in a Novel Human Ex Vivo Model of Late Rhinosinusitis. PLoS ONE 2015;10(7):e0133040. doi: 10.1371/journal.pone.0133040
52. Sagortchev P, Lukanov J, Beer AM. Assessments of 1.8-cineole effects on histamine receptor activity. Z Phytother 2012;33(1):12-13
53. Coelho-de-Souza LN, Leal-Cardoso JH, de Abreu Matos FJ, et al. Relaxant effects of the essential oil of Eucalyptus tereticornis and its main constituent 1,8-cineole on guinea-pig tracheal smooth muscle. Planta Med 2005;71:1173-5
54. Pereira-Gonçalves Á, Ferreira-da-Silva FW, de Holanda-Angelin-Alves CM, et al. 1,8-Cineole blocks voltage-gated L-type calcium channels in tracheal smooth muscle. Pflugers Arch 2018;470:1803-13
55. Juergens LJ, Worth H, Juergens UR. New perspectives for mucolytic, anti-inflammatory and adjunctive therapy with 1,8-cineole in COPD and asthma: Review on the new therapeutic approach. Adv Ther 2020. doi: 10.1007/s12325-020-01279-0
56. Müller J, Greiner JF, Zeuner M, et al. 1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clin Sci (Lond) 2016;130(15):1339-52
57. Nedeva C, Menassa J, Puthalakath H. Sepsis: Inflammation is a necessary evil. Front Cell Dev Biol 2019;7:108
58. Juergens UR, Gillissen A, Stöber M, et al. Antioxidative activity of 1.8-cineol by suppression of 8-isoprostane (8-lsoP) in human monocytes involves inhibition of superoxide anions (0 2 – ) and superoxide dismutases (SODs). Poster presented at: ATS Int Conference, 20–25/5/2005, San Diego, California, USA 2005
59. Juergens UR, Racke K, Tuleta I, et al. Antioxidative effects of monoterpene (1.8-cineol) compared with budesonide (bud) on superoxide (0 2 − ) production in human monocytes: new evidence for co-medication in COPD and sinusitis. Poster presented at: ATS lnt Conference, May 16–20th, 2009, San Diego, CA, USA 2009
60. Juergens UR, Engelen T, Racke K, et al. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther 2004;17:281-7
61. Juergens UR, Engelen T, Stöber M, et al. Inhibition of cytokine production by 1,8-cineol (eucalyptol) in stimulated human Lymphocytes and monocytes in vitro. Poster presented at: ALA/ATS Int Conference, 16–21/5/2003, Seattle, Washington, USA 2003
62. Hansbro PM, Kaiko GE, Foster PS. Cytokine/anti-cytokine therapy – novel treatments for asthma? Br J Pharmacol 2011;163:81-95
63. Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. Pharmacol Rev 1998;50:515-96
64. Ogawa Y, Calhoun WJ. The role of leukotrienes in airway inflammation. J Allergy Clin Immunol 2006;118:789-98; quiz 799-800
65. Baslas RK, Saxena S. Chemical Examination of Essential Oil from the Fruits of Eucalyptus globulus Labill. Herba Hung 1984;23:21-3
66. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc 2014;11:322-8
67. Greiner JFW, Müller J, Zeuner MT, et al. 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 2013;1833(12):2866-78
68. Zhou JY, Wang XF, Tang FD, et al. Inhibitory effect of 1,8-cineol (eucalyptol) on Egr-1 expression in lipopolysaccharide-stimulated THP-1 cells. Acta Pharmacol Sin 2007;28:908-12
69. Pawlinski R, Pedersen B, Kehrle B, et al. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 2003;101:3940-7
70. Birben E, Sahiner UM, Sackesen C, et al. Oxidative stress and antioxidant defense. World Allergy Organ J 2012;5:9-19
71. Rosanna DP, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 2012;18:3889-90
72. Packiavathy IASV, Agilandeswari P, Mustafa KS, et al. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against gram negative bacterial pathogens. Food Res Int 2012;45:85-92
73. Soković M, Glamočlija J, Marin PD, et al. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010;15:7532-46
74. Schürmann M, Oppel F, Gottschalk M, et al. The Therapeutic Effect of 1,8-Cineol on Pathogenic Bacteria Species Present in Chronic Rhinosinusitis. Front Microbiol 2019;10:2325
75. Niederfuhr A, Kirsche H, Deutschle T, et al. Staphylococcus aureus in nasal lavage and biopsy of patients with chronic rhinosinusitis. Allergy 2008;63:1359-67
76. Feazel LM, Robertson CE, Ramakrishnan VR, et al. Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope 2012;122:467-72
77. Nazzaro F, Fratianni F, De Martino L, et al. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013;6:1451-74
78. Plesiat P, Nikaido H. Outer membranes of Gram-negative bacteria are permeable to steroid probes. Mol Microbiol 1992;6:1323-33
79. Kavanaugh NL, Ribbeck K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 2012;78:4057-61
80. Merghni A, Noumi E, Hadded O, et al. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb Pathogen 2018;118:74-80
81. Elaissi A, Abid NBS, Rouis Z, et al. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement Altern Med 2012;12:81
82. Pattnaik S, Subramanyam VR, Bapaji M, et al. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 1997;89:39-46
83. Li ZW, Yin ZQ, Wei Q, et al. Antibacterial activity of leaf essential oils and its constituents from Cinnamomum longepaniculatum. Int J Clin Exp Med 2014;7:1721-7
84. Cox SD, Gustafson JE, Mann CM, et al. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett Appl Microbiol 1998;26:355-8
85. Cox SD, Mann CM, Markham JL, et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000;88:170-5
86. Kullas AL, Mcclelland M, Yang H, et al. L-Asparaginase II produced by salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe 2012;12:791-8
87. Simsek M, Duman R. Investigation of effect of 1,8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacogn Res 2017;9:234-7
88. Hriouech S, Akhmouch AA, Mzabi A, et al. The antistaphylococcal activity of amoxicillin/clavulanic acid, gentamicin, and 1,8-cineole alone or in combination and their efficacy through a rabbit model of methicillin-resistant Staphylococcus aureus osteomyelitis. Evid Based Complement Altern Med 2020;4271017. doi: 10.1155/2020/4271017
89. Yang Z, Wu N, Fu Y, et al. Anti-infectious bronchitis virus (IBV) activity of 1,8-cineole: effect on nucleocapsid (N) protein. J Biomol Struc Dyn 2010;28:323-30
90. Li Y, Lai Y, Wang Y, et al. 1, 8-Cineol Protect Against Influenza-Virus-Induced Pneumonia in Mice. Inflammation 2016;39(4):1582-93
91. Lai YN, Li Y, Fu LC, et al. Combinations of 1,8-cineol and oseltamivir for the treatment of influenza virus A (H3N2) infection in mice. J Med Virol 2017;89(7):1158-67
92. Li Y, Xu YN, Lai Y, et al. Intranasal co-administration of 1,8-cineole with influenza vaccine provide cross-protection against influenza virus infection. Phytomedicine 2017;34:127-35
93. Ćavar Zeljković S, Schadich E, Džubák P, et al. Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-Cov-2. Front Pharmacol 2022;13:893634
94. Kim H-M, Kwon H, Kim K, et al. Antifungal and Antiaflatoxigenic Activities of 1,8-Cineole and t-Cinnamaldehyde on Aspergillus flavus. Appl Sci 2018;8:1655
95. Kehrl W, Sonnemann U, Dethlefsen U. Therapy for Acute Nonpurulent Rhinosinusitis with Cineole: Results of a Double-Blind, Randomized, Placebo-Controlled Trial. Laryngoscope 2004;114:738-42
96. Tesche S, Metternich F, Sonnemann U, et al. The value of herbal medicines in the treatment of acute non-purulent rhinosinusitis. Results of a double-blind, randomised, controlled trial. Eur Arch Otorhinolaryngol 2008;265(11):1355-9
97. Kardos P, Klimek L, Palm J, et al. Benefits of early cineole administration during common cold: an exploratory clinical trial. Poster presented at: 56 DEGAM-Jahreskongress, 09/2022b, Greifswald, Germany
98. Fischer J, Dethlefsen U. Efficacy of cyneole in patients suffering from acute bronchitis: a placebo-controlled double-blind trial. Cough 2013;9(1):25