Abstract
The use of proton radiotherapy in the treatment of ocular melanoma
Uveal melanoma is the most common primary intraocular malignancy in the adult population. The incidence is higher among white populations and increases at higher latitudes.
Over the years numerous methods for treating choroidal melanoma have been developed. The choice of an optimal therapy depends on a variety of factors, including the tumor’s location and size, coexisting complications, and the patient’s overall health status. Treatment options for choroidal melanoma include radiotherapy, such as brachytherapy (e.g., 106Ru and 125I), proton beam radiotherapy (PBR), and less commonly stereotactic radiotherapy, as well as surgical methods such as tumor endoresection or exoresection, or ocular enucleation. In radiotherapy, the radiation dose and the volume of irradiated normal tissues is correlated to the rate of complications. Based on literature reports, it has been shown that proton beam radiotherapy using eye-dedicated equipment showed significantly improved beam penumbra, shorter treatment delivery time, better dose homogeneity, and reduced maximal/mean doses to critical ocular structures compared with other currently available external beam radiation modalities, e.g. CyberKnifeR-based stereotactic body radiation therapy (SBRT). High radiation doses can be delivered to tumors with relative sparing of adjacent tissues from collateral damage.
Proton beam therapy for ocular tumors has resulted in excellent overall chances for tumor control, ocular conservation, and visual preservation at a level comparable to brachytherapy.
Piśmiennictwo
1. Weis E, Shah CP, Lajous M, et al. The association between host susceptibility factors and uveal melanoma: a meta-analysis. Arch Ophthalmol 2006;124:54-60
2. Jovanovic P, Mihajlovic M, Djordjevic-Jocic J, et al. Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 2013;6:1230-44
3. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009;457(7229):599-602
4. Romanowska-Dixon B, Jager M, Coupland SE (red.). Onkologia okulistyczna. PZWL, Warszawa 2019
5. Zimmerman LE, McLean IW. An evaluation of enucleation in the management of uveal melanomas. Am J Ophthalmol 1979;87(6):741-60
6. Singh AD, Rennie IG, Kivela T, et al. The Zimmerman-McLean-Foster hypothesis: 25 years later. Br J Ophthalmol 2004;88(7):962-967
7. Zimmerman LE, McLean IW, Foster WD. Does enucleation of the eye containing a malignant melanoma prevent or accelerate the dissemination of tumour cells. Br J Ophthalmol 1978;62:420
8. Sas-Korczyńska B. Radioterapia nowotworów gałki ocznej i oczodołu. [W:] Romanowska-Dixon B, Jager M, Coupland SE (red.). Onkologia okulistyczna. PZWL, Warszawa 2019
9. Sas-Korczyńska B, Markiewicz A, Romanowska-Dixon B, et al. Preliminary results of proton radiotherapy for choroidal melanoma – the Kraków experience. Contemp Oncol 2014;14(14):3353
10. Egger E, Zografos L, Schalenbourg A, et al. Eye retention after proton beam radiotherapy for uveal melanoma. Int J Radiat Oncol Biol Phys 2003;55:867-80
11. Gerard A, Peyrichon ML, Vidal M, et al. Ocular proton therapy, pencil beam scanning high energy proton therapy or stereotactic radiotherapy for uveal melanoma; an in silico study. Cancer Radiother 2022;26(8):1027-33
12. Damato B, Kacperek A, Chopra M, et al. Proton beam radiotherapy of choroidal melanoma: the Liverpool-Clatterbridge experience. Int J Radiat Oncol Biol Phys 2005;62(5):1405-11
13. Egger E, Zografos L, Schalenbourg A, et al. Eye retention after proton beam radiotherapy for uveal melanoma. Int J Radiat Oncol Biol Phys 2003;55(4):867-80
14. Egger E, Zografos L, Munkel G, et al. Results of proton radiotherapy for uveal melanomas. Front Radiat Ther Oncol 1997;30:111-22
15. Gragoudas ES. Proton beam irradiation of uveal melanomas: the first 30 years. The Weisenfeld Lecture. Invest Ophthalmol Vis Sci 2006;47(11):4666-73