Piśmiennictwo:
1. Peterson LR. Bad bugs, no drugs: no ESCAPE revisited. Clin Infect Dis 2009;49:992-993.
2. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289:321-331.
3. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995;39:1211-1233.
4. Page MG. Extended-spectrum β-lactamases: structure and kinetic mechanism. Clin Microbiol Infect 2008;14(suppl 1):63-74.
5. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009;22:161-182.
6. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657-686.
7. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 2007;20:440-458.
8. Bratu S, Mooty M, Nichani S, et al. Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother 2005;49:3018-3020.
9. Tenover FC, Kalsi RK, Williams PP, et al. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis 2006;12:1209-1213.
10. Zavascki AP, Carvalhaes CG, Picao RC, et al. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 2010;8:71-93.
11. Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century: a clinical super-challenge. N Engl J Med 2009;360:439-443.
12. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in gram-negative bacterial pathogens. Int J Med Microbiol 2010; 300:371-379.
13. Rossi F, Baquero F, Hsueh PR, et al. In vitro susceptibilities of aerobic and facultatively anaerobic gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: 2004 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). J Antimicrob Chemother 2006;58:205-210.
14. Reinert RR, Low DE, Rossi F, et al. Anti-microbial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 2007;60:1018-1029.
15. Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004;48:1-14.
16. Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165-174.
17. Ben-Ami R, Rodriguez-Bano J, Arslan H, et al. A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009;49:682-690.
18. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151-1161.
19. Bratu S, Landman D, Haag R, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165:1430-1435.
20. Naas T, Nordmann P, Vedel G, et al. Plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother 2005;49:4423-4424.
21. Wei ZQ, Du XX, Yu YS, et al. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 2007;51:763-765.
22. Villegas MV, Lolans K, Correa A, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother 2006;50:2880-2882.
23. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010;10:597-602.
24. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159-166.
25. Endimiani A, Luzzaro F, Perilli M, et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum β-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis 2004;38:243-251.
26. Paterson DL, Ko WC, Von Gottberg A, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum β-lactamases. Clin Infect Dis 2004;39:31-37.
27. Lye DC, Wijaya L, Chan J, et al. Ertapenem for treatment of extended-spectrum β-lactamase-producing and multidrug-resistant gram-negative bacteraemia. Ann Acad Med Singapore 2008;37:831-834.
28. Paterson DL, Depestel DD. Doripenem. Clin Infect Dis 2009;49:291-298.
29. Kelesidis T, Karageorgopoulos DE, Kelesidis I, et al. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother 2008;62:895-904.
30. Falagas ME, Karageorgopoulos DE, Dimopoulos G. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of tigecycline. Curr Drug Metab 2009;10:13-21.
31. Freire AT, Melnyk V, Kim MJ, et al; 311 Study Group. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010;68:140-151.
32. Payne DJ, Cramp R, Winstanley DJ, et al. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important β-lactamases. Antimicrob Agents Chemother 1994;38:767-772.
33. Rodriguez-Bano J, Alcala JC, Cisneros JM, et al. Community infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Arch Intern Med 2008;168:1897-1902.
34. Peterson LR. Antibiotic policy and prescribing strategies for therapy of extended-spectrum β-lactamase-producing Enterobacteriaceae: the role of piperacillin-tazobactam. Clin Microbiol Infect 2008;14(suppl 1):181-184.
35. Gavin PJ, Suseno MT, Thomson RB Jr, et al. Clinical correlation of the CLSI susceptibility breakpoint for piperacillin-tazobactam against extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother 2006;50:2244-2247.
36. Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2001;45:3548-3554.
37. Rodriguez-Bano J, Navarro MD, Romero L, et al. Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 2006;43:1407-1414.
38. Zanetti G, Bally F, Greub G, et al. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother 2003;47:3442-3447.
39. Parchuri S, Mohan S, Cunha BA. Extended spectrum β-lactamase-producing Klebsiella pneumoniae chronic ambulatory peritoneal dialysis peritonitis treated successfully with polymyxin B. Heart Lung 2005;34:360-363.
40. Segal-Maurer S, Mariano N, Qavi A, et al. Successful treatment of ceftazidime-resistant Klebsiella pneumoniae ventriculitis with intravenous meropenem and intraventricular polymyxin B: case report and review. Clin Infect Dis 1999;28:1134-1138.
41. Galani I, Kontopidou F, Souli M, et al. Colistin susceptibility testing by Etest and disk diffusion methods. Int J Antimicrob Agents 2008;31:434-439.
42. Reeves DS. Fosfomycin trometamol. J Antimicrob Chemother 1994;34: 853-858.
43. Falagas ME, Kanellopoulou MD, Karageorgopoulos DE, et al. Antimicrobial susceptibility of multidrug-resistant gram negative bacteria to fosfomycin. Eur J Clin Microbiol Infect Dis 2008;27:439-443.
44. Falagas ME, Kastoris AC, Kapaskelis AM, et al. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010;10:43-50.
45. Popovic M, Steinort D, Pillai S, et al. Fosfomycin: an old, new friend? Eur J Clin Microbiol Infect Dis 2010;29:127-142.
46. Glupczynski Y, Huang TD, Berhin C, et al. In vitro activity of temocillin against prevalent extended-spectrum β-lactamases producing Enterobac-teriaceae from Belgian intensive care units. Eur J Clin Microbiol Infect Dis 2007;26:777-783.
47. Nicolle LE, Mulvey MR. Successful treatment of CTX-M ESBL producing Escherichia coli relapsing pyelonephritis with long term pivmecillinam. Scand J Infect Dis 2007;39:748-749.
48. Jia B, Lu P, Huang W, et al. A multicenter, randomized controlled clinical study on biapenem and imipenem/cilastatin injection in the treatment of respiratory and urinary tract infections. Chemotherapy 2010;56:285-290.
49. Mushtaq S, Hope R, Warner M, et al. Activity of faropenem against cephalosporin-resistant Enterobacteriaceae. J Antimicrob Chemother 2007;59:1025-1030.
50. Koga T, Abe T, Inoue H, et al. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob Agents Chemother 2005;49:3239-3250.
51. Garau J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect 2008;14(suppl 1):198-202.
52. Bratu S, Tolaney P, Karumudi U, et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 2005;56:128-132.
53. Castanheira M, Sader HS, Deshpande LM, et al. Antimicrobial activities of tigecycline and other broad-spectrum antimicrobials tested against serine carbapenemase- and metallo-β-lactamase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2008;52:570-573.
54. Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 2010;65:1119-1125.
55. Anthony KB, Fishman NO, Linkin DR, et al. Clinical and microbiological outcomes of serious infections with multidrug-resistant gram-negative organisms treated with tigecycline. Clin Infect Dis 2008;46:567-570.
56. Samra Z, Ofir O, Lishtzinsky Y, et al. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int J Antimicrob Agents 2007;30:525-529.
57. Kontopoulou K, Protonotariou E, Vasilakos K, et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 β-lactamase resistant to colistin. J Hosp Infect 2010;76:70-73.
58. Endimiani A, Patel G, Hujer KM, et al. In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob Agents Chemother 2010;54:526-529.
59. Urban C, Mariano N, Rahal JJ. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob Agents Chemother 2010;54:2732-2734.
60. Melchers R, Mavridou E, Van Mil A, et al. In vitro activity of imipenem alone and in combination with MK-7655: a new β-lactamase inhibitor [poster F1-2138]. Poster presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy; Boston, MA; September 12-15, 2010.
61. Livermore DM. Spectrum and potential of NXL104 as a β-lactamase inhibitor [poster 1849]. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy; Boston, MA; September 12-15, 2010.
62. Sheri A, Pagadala SR, Young K, et al. Optimization of a carbapenem/β-lactamase inhibitor combination against highly resistant gram-negative microorganisms [poster F1-1496]. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy; Boston, MA; September 12-15, 2010.
63. Jacobs MR, Bajaksouzian S, Butler MM, et al. Activity of novel bis-indole agents against carbapenemase-producing Klebsiella pneumoniae [poster F1-1632]. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy; Boston, MA; September 12-15, 2010.
64. Tam VH, Rogers CA, Chang KT, et al. Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 2010;54:3717-3722.
65. Bellais S, Mimoz O, Leotard S, et al. Efficacy of β-lactams for treating experimentally induced pneumonia due to a carbapenem-hydrolyzing metallo-β-lactamase-producing strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2002;46:2032-2034.
66. Gimeno C, Canton R, Garcia A, et al. Comparative activity of doripenem, meropenem, and imipenem in recent clinical isolates obtained during the COMPACT-Spain epidemiological surveillance study [in Spanish]. Rev Esp Quimioter 2010;23:144-152.
67. Pillar CM, Torres MK, Brown NP, et al. In vitro activity of doripenem, a carbapenem for the treatment of challenging infections caused by gram-negative bacteria, against recent clinical isolates from the United States. Antimicrob Agents Chemother 2008;52:4388-4399.
68. Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transcon jugants and resistance selection potential. Antimicrob Agents Chemother 2004;48:3086-3092.
69. Kaye KS, Kanafani ZA, Dodds AE, et al. Differential effects of levofloxacin and ciprofloxacin on the risk for isolation of quinolone-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006;50:2192-2196.
70. Kallel H, Hergafi L, Bahloul M, et al. Safety and efficacy of colistin compared with imipenem in the treatment of ventilator-associated pneumonia: a matched case-control study. Intensive Care Med 2007;33:1162-1167.
71. Linden PK, Kusne S, Coley K, et al. Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. Clin Infect Dis 2003;37:e154-e160.
72. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 2006;10:R27.
73. Daikos GL, Skiada A, Pavleas J, et al. Serum bactericidal activity of three different dosing regimens of colistin with implications for optimum clinical use. J Chemother 2010;22:175-178.
74. Falagas ME, Rafailidis PI, Ioannidou E, et al. Colistin therapy for microbiologically documented multidrug-resistant gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents 2010;35:194-199.
75. Korvick JA, Peacock JE Jr, Muder RR, et al. Addition of rifampin to combination antibiotic therapy for Pseudomonas aeruginosa bacteremia: prospective trial using the Zelen protocol. Antimicrob Agents Chemother 1992;36:620-625.
76. Hilf M, Yu VL, Sharp J, et al. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am J Med 1989;87:540-546.
77. Chamot E, Boffi El Amari E, Rohner P, et al. Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 2003;47:2756-2764.
78. Paul M, Benuri-Silbiger I, Soares-Weiser K, et al. Beta lactam monotherapy versus β lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials [published correction appears in BMJ 2004;328(7444):884]. BMJ 2004;328:668.
79. Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 2004;4:519-527.
80. Drago L, De Vecchi E, Nicola L, et al. In vitro selection of resistance in Pseudomonas aeruginosa and Acinetobacter spp. by levofloxacin and ciprofloxacin alone and in combination with β-lactams and amikacin. J Antimicrob Chemother 2005;56:353-359.
81. Lister PD, Wolter DJ. Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. Clin Infect Dis 2005;40(suppl 2):S105-S114.
82. Carmeli Y, Troillet N, Eliopoulos GM, et al. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999;43:1379-1382.
83. Dubois V, Arpin C, Melon M, et al. Nosocomial outbreak due to a multi-resistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of β-lactam resistance. J Clin Microbiol 2001;39: 2072-2078.
84. Dundar D, Otkun M. In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med J 2010;51:111-116.
85. Fish DN, Choi MK, Jung R. Synergic activity of cephalosporins plus fluoroquinolones against Pseudomonas aeruginosa with resistance to one or both drugs. J Antimicrob Chemother 2002;50:1045-1049.
86. Zuravleff JJ, Yu VL, Yee RB. Ticarcillin-tobramycin-rifampin: in vitro synergy of the triplet combination against Pseudomonas aeruginosa. J Lab Clin Med 1983;101:896-902.
87. Urena MT, Barasoain I, Espinosa M, et al. Evaluation of different antibiotic actions combined with rifampicin: in vitro synergism against Pseudomonas and Proteus. Chemotherapy 1975;21:82-89.
88. Gunderson BW, Ibrahim KH, Hovde LB, et al. Synergistic activity of colistin and ceftazidime against multi-antibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2003;47:905-909.
89. Saiman L, Chen Y, Gabriel PS, et al. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 2002;46:1105-1107.
90. Timurkaynak F, Can F, Azap OK, et al. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrob Agents 2006;27:224-228.
91. Milne KE, Gould IM. Combination testing of multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa: use of a new parameter, the susceptible breakpoint index. J Antimicrob Chemother 2010;65:82-90.
92. Brown RB, Kruse JA, Counts GW, Russell JA, et al. The Endotracheal Tobramycin Study Group. Double-blind study of endotracheal tobramycin in the treatment of gram-negative bacterial pneumonia. Antimicrob Agents Chemother 1990;34:269-272.
93. Ratjen F, Doring G, Nikolaizik WH. Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonisation in patients with cystic fibrosis. Lancet 2001;358:983-984.
94. Moss RB. Long-term benefits of inhaled tobramycin in adolescent patients with cystic fibrosis. Chest 2002;121:55-63.
95. Kwa AL, Loh C, Low JG et al. Nebulized colistin in the treatment of pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis 2005;41:754-757.
96. Feldman C, White H, O’Grady J, et al. An open, randomised, multi-centre study comparing the safety and efficacy of sitafloxacin and imipenem/cilastatin in the intravenous treatment of hospitalised patients with pneumonia. Int J Antimicrob Agents 2001;17:177-188.
97. Baer M, Sawa T, Flynn P, et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun. 2009;77:1083-1090.
98. Takeda S, Nakai T, Wakai Y, et al. In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2007;51:826-830.
99. Mushtaq S, Warner M, Livermore DM. In vitro activity of ceftazidime+NXL104 against Pseudomonas aeruginosa and other non-fermenters. J Antimicrob Chemother 2010;65(11):2376-2381.
100. Venkatesan AM, Agarwal A, Abe T, et al. Novel imidazole substituted 6-methylidene-penems as broad spectrum β-lactamase inhibitors. Bioorg Med Chem 2004;12:5807-5817.
101. Page MG, Heim J. Prospects for the next anti-Pseudomonas drug. Curr Opin Pharmacol 2009;9:558-565.
102. Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 2007;44:357-363.
103. Moriyama B, Henning SA, Childs R, et al. High-dose continuous infusion β-lactam antibiotics for the treatment of resistant Pseudomonas aeruginosa infections in immunocompromised patients. Ann Pharmacother 2010;44:929-935.
104. Kuti JL, Dandekar PK, Nightingale CH, et al. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem. J Clin Pharmacol 2003;43:1116-1123.
105. Chastre J, Wunderink R, Prokocimer P, et al. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med 2008;36:1089-1096.
106. Malafaia O, Umeh O, Jiang J. Doripenem versus meropenem for the treatment of complicated intra-abdominal infections [poster L-1564b]. Presented at: 46th Interscience Conference on Antimicrobial Agents and Chemotherapy; San Francisco, CA; September 27-30, 2006.
107. Bulik CC, Nicolau DP. In vivo efficacy of 1g human simulated prolonged infusion doripenem (DOR) against carbapenemase producing Klebsiella pneumoniae (KPC) [poster A1-014]. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy; Boston, MA; September 12-15, 2010.