ŚWIĄTECZNA DARMOWA DOSTAWA od 20 grudnia do 8 stycznia! Zamówienia złożone w tym okresie wyślemy od 2 stycznia 2025. Sprawdź >
Pacjenci, u których rozwinęło się popromienne zwłóknienie płuc, nie odnoszą korzyści z leczenia glikokortykosteroidami. Brakuje także innych skutecznych metod leczenia. W przypadku nasilonych objawów można rozważyć zastosowanie pentoksyfiliny (w dawce 400 mg 2-3 × na dobę) oraz witaminy E (w dawce 1000 j.m. na dobę). Wskazane jest podawanie gwajafenezyny w celu ułatwienia odkrztuszania zalegającej wydzieliny. Pomoc przynosi również odpowiednia rehabilitacja oddechowa.
ABSTRACT
Radiation-induced lung injury
Radiation-induced lung injury (RILI) is a general term for damage to the lung as a result of radiotherapy of the chest for lung cancer, breast cancer or lymphoid neoplasms. It occurs in 20% of patients and limits the maximum dose that can be delivered. There are two phases of radiation lung damage: radiation pneumonitis (RP), which is early inflammatory damage, and lung fibrosis (LF), a late pulmonary complication. Radiation pneumonitis develops 4 to 12 weeks after completion of the radiotherapy. Chronic pneumonitis can lead to pulmonary fibrosis, which develops 4-6 months after treatment. Radiation-induced lung tissue complication depends on several parameters. Both physical and biological factors determine lung tissue complication probability. The risk of radiation-induced lung toxicity cannot be completely avoided, but modern radiotherapy techniques partially prevent this. Most patients who develop radiation-induced pulmonary lesions are asymptomatic and do not require treatment. However, appropriate diagnosis of radiation pneumonitis and treatment, if necessary, are important because the quality of life is impaired.
KEYWORDS: radiation-induced lung injury, radiation pneumonitis, lung fibrosis.
Zalecane piśmiennictwo
1. Abratt RP, Morgan GW. Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer 2002;35:103-9
2. Barcellos-Hoff MH. How tissues respond to damage at the cellular level: orchestration by transforming growth factor-(beta) (TGF-beta). BJR 2005;27:123-7
3. Beneveniste MF, Gomez D, Carter BW et al. Recognizing radiation therapy–related complications in the chest. RadioGraphics 2019;39:344-66
4. Bledsoe TJ, Nath SK, Decker RH. Radiation Pneumonitis. Clin Chest Med 2017;38:201-8
5. Borst GR, De Jaeger K, Belderbos JS et al. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys 2005;62:639-44
6. Chen Y, Williams J, Ding I et al. Radiation pneumonitis and early circulatory cytokine markers. Semin Radiat Oncol 2002;12:26-33
7. Choi YW, Munden RF, Erasmus JJ et al. Effects of radiation therapy on the lung: radiologic appearances and differential diagnosis. RadioGraphics 2004;24:985-97
8. Graves PR, Siddiqui F, Anscher MS et al. Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol 2010;20:201-7
9. Henkenberens C, Janssen S, Lavae-Mokhtari M et al. Inhalative steroids as an individual treatment in symptomatic lung cancer patients with radiation pneumonitis grade II after radiotherapy – a single-centre experience. Radiat Oncol 2016;11:12
10. Hope AJ, Lindsay PE, El Naqa T et al. Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 2006;65:112-24
11. Kma L, Gao F, Fish BL et al. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax. J Radiat Res 2012;53:10-7
12. Lierova A, Jelicova M, Nemcova M et al. Cytokines and radiation-induced pulmonary injuries. J Radiat Res 2018;59:709-53
13. Marks LB, Yu X, Vujaskovic Z et al. Radiation-induced lung injury. Semin Radiat Oncol 2003;13:333-45
14. Medhora M, Gao F, Jacobs ER, Moulder JE. Radiation damage to the lung: mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology 2012;17:66-71
15. Mehta V. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction and prevention. Int J Radiat Oncol Biol Phys 2005;63:5-24
16. Nowotwory płuca i opłucnej. Red. Jassem J, Krzakowski M. Via Medica, 2009
17. Rubin P, Finkelstein J, Shapiro D. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 1992;24:93-101
18. Sas-Korczyńska B, Komnata K. Powikłania po radioterapii w płucach. Patomechanizm, objawy kliniczne, leczenie, profilaktyka. Medycyna po Dyplomie 2014
19. Xiong H, Liao Z, Liu Z et al. ATM polymorphisms predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys 2013;85:1066
20. Zhang L, Yang M, Bi N et al. ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys 2010;77:1360-8