ŚWIĄTECZNA DARMOWA DOSTAWA od 20 grudnia do 8 stycznia! Zamówienia złożone w tym okresie wyślemy od 2 stycznia 2025. Sprawdź >
Kaszel produktywny (charakterystyczny dla drugiej fazy zapalenia) stanowi podstawę do podania leków mukoaktywnych186:
- mukolitycznych, które zmieniają właściwości fizykochemiczne śluzu, powodując zmniejszenie lepkości wydzieliny. W ostrych zakażeniach skuteczne jest podawanie N-acetylocysteiny i erdosteiny
- mukokinetycznych, np. ambroksolu oraz bromoheksyny. Leki z tej grupy działają w obrębie aparatu rzęskowego komórek nabłonka dróg oddechowych, usprawniając transport śluzowo-rzęskowy
- mukoregulujących, np. karbocysteiny, która hamuje proces przewlekłej hipersekrecji śluzu.
Ponadto w przypadku kaszlu w przebiegu ostrego zapalenia oskrzeli 1,8-cyneol wykazał znaczące działanie zmniejszające częstość napadów kaszlu188.
W ostrym zapaleniu gardła, chorobie o przeważnie wirusowej etiologii (nawet do 95% przypadków) i dominującym objawie w postaci bólu przy przełykaniu, korzystnie działają stosowane miejscowo leki przeciwzapalne (benzydamina, diklofenak, flurbiprofen), leki znieczulające miejscowo (lidokaina, benzokaina, mentol) czy antyseptyki (amylometakrezol, alkohol 2,4-dichlorobenzylowy, oktenidyna)186. Oktenidyna działa przeciwwirusowo, przeciwbakteryjnie, przeciwgrzybiczo oraz ma działanie przeciwbólowe189. Dodatkowo, opublikowane w 2023 r. badania in vitro potwierdziły wysoką skuteczność tej substancji w eradykacji biofilmu wytworzonego przez: S. aureus, S. pyogenes, P. aeruginosa, C. albicans, Aggregatibacter actinomycetemcomitans190. Za bezpieczeństwem oktenidyny przemawia fakt, iż na podstawie badań przedklinicznych zakłada się, że substancja czynna nie jest wchłaniana ogólnoustrojowo w przewodzie pokarmowym.
Należy zauważyć, że wszystkie substancje zalecane w zakażeniach dróg oddechowych powinny być stosowane zgodnie ze wskazówkami lekarza, w celu ograniczenia ryzyka rozwoju działań niepożądanych, i zawsze, jeśli jest taka możliwość, powinniśmy wybierać substancje bezpieczne.
Podsumowując, w leczeniu zakażeń dróg oddechowych, szczególnie tych o etiologii wirusowej, należy skupić się na leczeniu objawowym, unikać nieuzasadnionego stosowania antybiotyków i przeprowadzać odpowiednią diagnostykę w celu rozróżnienia etiologii bakteryjnej i wirusowej.
Zdjęcia: archiwum prywatne, Michał Teperek, Bartosz Jankowski, onurdongel/iStock/Getty Images Plus/getty images, Christoph Burgstedt/iStock/Getty Images Plus/getty images
Piśmiennictwo
1. Global antimicrobial resistance and use surveillance system (GLASS) report 2021. World Health Organization: Geneva;2021
2. Cassini A, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019;19(1):56-66
3. Holmes AH, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016;387(10014):176-87
4. Osthoff M, et al. Impact of MALDI-TOF-MS-based identification directly from positive blood cultures on patient management: a controlled clinical trial. Clin Microbiol Infect 2017;23(2):78-85
5. Timbrook TT, et al. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017;64(1):15-23
6. Buchan BW, et al. Practical comparison of the BioFire FilmArray pneumonia panel to routine diagnostic methods and potential impact on antimicrobial stewardship in adult hospitalized patients with lower respiratory tract infections. J Clin Microbiol 2020;(7):58
7. Oever J, et al. Utility of immune response-derived biomarkers in the differential diagnosis of inflammatory disorders. J Infect 2016 Jan;72(1):1-18
8. Schuetz P, et al. Effect of procalcitonin-guide antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 2018;18(1):95-107
9. Little P, et al. Effects of internet-based training on antibiotic prescribing rates for acute respiratory-tract infections: a multinational, cluster, randomised, factorial, controlled trial. Lancet 2013;382(9899):1175-82
10. Fal AM, et al. Zasady racjonalizacji terapii antybiotykowych w schorzeniach układu oddechowego i moczowego. Medical Tribune 2022;5:3-18
11. WHO. WHO Antibiotic Categorization. https://aware.essentialmeds.org/groups (dostęp 2023.05.24)
12. Thabet P, et al. Clinical and pharmacokinetic/dynamic outcomes of prolonged infusions of beta-lactam antimicrobials: an overview of systematic reviews. PLoS ONE 2021;16(1):e0244966.
13. Heffernan AJ, et al. How to optimize antibiotic pharmacokinetic/pharmacodynamics for Gram-negative infections in critically ill patients. Curr Opin Infect Dis 2018;31:555-65
14. Veiga RP, Paiva JA. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lac- tam antibiotics in critically ill patients. Crit Care 2018;22:233
15. Martinez MN, et al. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 2012;56(6):2795-805
16. Abdul-Aziz MH, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 2016;42(10):1535-45
17. Vardakas KZ, et al. Prolonged versus short-term intravenous infusion of antipseudomonal beta-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis 2018;18(1):108-20
18. Rhodes NJ, et al. Prolonged infusion piperacillin-tazobactam decreases mortality and improves outcomes in severely Ill patients: results of a systematic review and meta-analysis. Crit Care Med 2018;46(2):236-43
19. Fawaz S, et al. Comparing clinical outcomes of piperacillin-tazobactam administration and dosage strategies in critically ill adult patients: a systematic review and meta-analysis. BMC Infect Dis 2020;20(1):430
20. Cunha CB. Antibiotic Stewardship Program Perspective: Oral Antibiotic Therapy for Common Infectious Diseases. Med Clin North Am 2018;102(5):947-54
21. El Moussaoui R, et al. Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study. BMJ 2006;332(7554):1355
22. Bouadma L, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PROATA trial): a multicentre randomised controlled trial. Lancet 2010;375(9713):463-74
23. Wald-Dickler N, Spellberg B. Short-course antibiotic therapy -replacing constantine units with „Shorter Is Better”. Clin Infect Dis 2019;69(9):1476-9
24. Lee EY, et al. Worldwide Prevalence of Antibiotic-Associated Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: A Systematic Review and Meta-analysis. JAMA Dermatol 2023;159(4):384-92
25. Turnbaugh PJ, et al. The human microbiome project. Nature 2007;449(7164): 804-10
26. Strzępa A, et al. Antibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int Immunopharmacol 2018;65:328-41
27. Kim S, et al. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017;279(1):90-105
28. Anthony WE, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep 2022;39:110649
29. McFarland LV. Antibiotic-associated diarrhea: epidemiology, trends and treatment. Future Microbiol 2008;3:563-78
30. Yang L, et al. The varying effects of antibiotics on gut microbiota. AMB Expr 2021;11:116
31. Neuman H, et al. Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiol Rev 2018;42(4):489-99
32. Vangay P, et al. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 2015;13,17(5):553-64
33. Blondeau JM. What have we learned about antimicrobial use and the risks for Clostridium difficile associated diarrhoea? J Antimicrob Chemother 2009;63(2):238-42
34. Stevens V, et al. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011;53:42-8
35. Brown KA. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother 2013;57:2326-32
36. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med 2015;372:1539-48
37. Samiha Mohsen S, et al. Update on the adverse effects of antimicrobial therapies in community practice. Canadian Family Physician 2020;66:651-9
38. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 2011;108(Supl.1):4554-61
39. Buffie CG, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2012;80:62-73
40. McDonald D, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere 2016;1:e00199-16
41. Ojima M, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 2016;61:1628-34
42. Tanaka S, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 2009;56:80-7
43. Fouhy F, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 2012;56:5811-20
44. Imhann F, et al. Proton pump inhibitors affect the gut microbiome. Gut 2016;65(5):740-8
45. Azad MB, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 2016;123:983-93
46. Aversa Z, et al. Association of Infant Antibiotic Exposure With Childhood Health Outcomes. Mayo Clin Proc 2021;96(1):66-77
47. Nel Van Zyl K, et al. Effect of antibiotics on the human microbiome: a systematic review. International Journal of Antimicrobial Agents 2022;59:106502
48. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nature reviews. Immunology 2014;14(10):667-85
49. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157(1):121-41
50. Karczewski J, et al. The effects of the microbiota on the host immune system. Autoimmunity 2014;47(8): 494-504
51. Giongo A, et al. Toward defining the autoimmune microbiome for type 1 diabetes. The ISME journal 2011;5(1):82-91
52. Murri M, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC medicine 2013;11:46
53. Collado MC, et al. Differences between the fecal microbiota of coeliac infants and healthy controls. Current issues in intestinal microbiology 2007;8(1):9-14
54. Nadal I, et al. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of medical microbiology 2007;56(Pt 12):1669-74
55. Transeth EL, et al. Comparison of gut microbiota profile in celiac disease, non-celiac gluten sensitivity and irritable bowel syndrome: A systematic review. Turk J Gastroenterol 2020;31(11):735-45
56. Gophna U, et al. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. Journal of clinical microbiology 2006;44(11):4136-41
57. Dicksved J, et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. The ISME journal 2008;2(7):716-27
58. Vaahtovuo J, et al. Fecal microbiota in early rheumatoid arthritis. The Journal of rheumatology 2008;35(8):1500-5
59. Koziel J, et al. The link between periodontal disease and rheumatoid arthritis: an updated review. Current rheumatology reports 2014;16(3):408
60. Fukaya T, et al. Gut dysbiosis promotes the breakdown of oral tolerance mediated through dysfunction of mucosal dendritic cells. Cell reports, 2023;42(5):112431
61. Zhang X, et al. An Antibiotic-Impacted Microbiota Compromises the Development of Colonic Regulatory T Cells and Predisposes to Dysregulated Immune Responses. mBio 2021;12(1):e03335-20
62. Gonzalez-Perez, et al. Maternal Antibiotic Treatment Impacts Development of the Neonatal Intestinal Microbiome and Antiviral Immunity. Journal of immunology 2016;196(9):3768-79
63. Gray J, et al. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med 2017;9(376):eaaf9412
64. Silva Lagos L, et al. TLR2 and TLR4 activity in monocytes and macrophages after exposure to amoxicillin, ciprofloxacin, doxycycline and erythromycin. The Journal of antimicrobial chemotherapy 2022;77(11):2972-83
65. Bode C, et al. Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of Toll-like receptors, cytokine production and phagocytosis in vitro. International immunopharmacology 2014;18(1), 27-34
66. Kristian SA, et al. Impairment of innate immune killing mechanisms by bacteriostatic antibiotics. FASEB J 2007;21:1107-16
67. Dhand A, et al. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis 2011;53:158-63
68. Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin Ther 2014;36:1303-16
69. Lin L, et al. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens. EBioMedicine 2015;2(7):690-8
70. Sakoulas G, et al. Examining the use of ceftaroline in the treatment of Streptococcus pneumoniae meningitis with reference to human cathelicidin LL-37. Antimicrob Agents Chemother 2015;59:2428-31
71. Sakoulas G, et al. Interaction of Antibiotics with Innate Host Defense Factors against Salmonella enterica Serotype Newport. mSphere 2017;2(6):e00410-17
72. Ganal-Vonarburg SC, Duerr CU. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology 2020;159(1):39-51
73. Campbell C, et al. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023;11(2):294
74. Hagan T, et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019;178(6):1313-28.e13
75. Swaminathan G, et al. Vaccine Hyporesponse Induced by Individual Antibiotic Treatment in Mice and Non-Human Primates Is Diminished upon Recovery of the Gut Microbiome. Vaccines 2021;9(11):1340
76. Chapman TJ, et al. Antibiotic Use and Vaccine Antibody Levels. Pediatrics 2022;149(5):e2021052061
77. Cheung KS, et al. Association between Recent Usage of Antibiotics and Immunogenicity within Six Months after COVID-19 Vaccination. Vaccines 2022;10(7):1122
78. He J, et al. Clinical impacts of azithromycin on lung function and cytokines for asthmatic patients. JMS 2009;36(6):719-22
79. Zimmermann P, et al. The Immunomodulatory Effects of Macrolides-A Systematic Review of the Underlying Mechanisms. Frontiers in immunology 2018;9:302
80. Alexander VN, et al. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr 2011;159(3):392-7
81. Raba AA, et al. Are antibiotics a risk factor for the development of necrotizing enterocolitis-case-control retrospective study. European journal of pediatrics 2019;178(6):923-8
82. Chaaban H, et al. Early Antibiotic Exposure Alters Intestinal Development and Increases Susceptibility to Necrotizing Enterocolitis: A Mechanistic Study. Microorganisms 2022;10(3):519
83. Duong QA, et al. Antibiotic exposure and adverse long-term health outcomes in children: A systematic review and meta-analysis. The Journal of infection 2022;85(3):213-300
84. Mercer BM, et al. Antibiotic use in pregnancy and drug-resistant infant sepsis. American journal of obstetrics and gynecology 1999;181(4):816-21
85. Miller JE, et al. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. International journal of epidemiology 2018;47(2):561-71
86. Deshmukh HS, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature medicine 2014;20(5):524-30
87. McDonnell L, et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut microbes 2021;13(1):1-18
88. Ichinohe T, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 2011;108:5354-9
89. Abt MC, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012;37:158-70
90. Wu S, et al. Microbiota regulates the TLR7 signaling pathway against respiratory tract influenza A virus infection. Curr Microbiol 2013;67:414-22
91. Scott NA, et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Science translational medicine 2018;10(464): eaao4755
92. Thackray LB, et al. Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell reports 2018;22(13):3440-53.e6
93. Ogimi C, et al. Antibiotic Exposure Prior to Respiratory Viral Infection Is Associated with Progression to Lower Respiratory Tract Disease in Allogeneic Hematopoietic Cell Transplant Recipients. Biology of blood and marrow transplantation: Journal of the American Society for Blood and Marrow Transplantation 2018;24(11):2293-301
94. Chai G, et al. Trends of outpatient prescription drug utilization in US children, 2002-2010. Pediatrics 2012;130:23-31
95. Sturkenboom MC, et al. Drug use in children: cohort study in three European countries. BMJ 2008;337:a2245
96. Resi D, et al. Antibiotic prescriptions in children. J Antimicrob Chemother 2003;52:282-6
97. Cukrowska B. Microbial and Nutritional Programming-The Importance of the Microbiome and Early Exposure to Potential Food Allergens in the Development of Allergies. Nutrients 2018;10(10):1541
98. Hellman J, et al. Antibiotic consumption among a Swedish cohort of children born in 2006. Acta Paediatr 2015;104:1035-8
99. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science 2016;352:544-5
100. Lach G, et al. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 2017;15(6):36-59
101. Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 2017;17(12):94
102. Hicks LA, et al. US outpatient antibiotic prescribing, 2010. N Engl J Med 2013;368:1461-2
103. Teo SM, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015;17:704-15
104. Prevaes SM, et al. Development of the nasopharyngeal microbiota in infants with cystic fibrosis. Am J Respir Crit Care Med 2016;193:504-15
105. Pettigrew MM, et al. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl Environ Microbiol 2012;78:6262-70
106. Leibovitz E, et al. Recurrent acute otitis media occurring within one month from completion of antibiotic therapy: relationship to the original pathogen. Pediatr Infect Dis J 2003;22:209-16
107. Ahmadizar F, et al. Early life antibiotic use and the risk of asthma and asthma exacerbations in children. Pediatric Allergy & Immunology 2017;28:430-7
108. Chen IL, et al. Effect of antibiotic use for acute bronchiolitis on new-onset asthma in children. Scientific Reports 2018;8:6090
109. Almqvist C, et al. Antibiotics and asthma medication in a large register-based cohort study − confounding, cause and effect. Clin Exp Allergy 2012;42:104-11
110. Jedrychowski W, et al. Wheezing and asthma may be enhanced by broad spectrum antibiotics used in early childhood. Concept and results of a pharmacoepidemiology study. Journal of Physiology & Pharmacology 2011;62:189-95
111. Metsala J, et al. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clinical & Experimental Allergy 2015;45:137-45
112. Pitter G, et al. Antibiotic exposure in the first year of life and later treated asthma, a population based birth cohort study of 143,000 children. European Journal of Epidemiology 2016;31:85-94
113. Yoshida S, et al. Prenatal and early-life antibiotic use and risk of childhood asthma: A retrospective cohort study. Pediatr Allergy Immunol 2018;29:490-5
114. Yamamoto-Hanada K, et al. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Annals of Allergy Asthma & Immunology 2017;119:54-8
115. McKeever TM, et al. Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database. J Allergy Clin Immunol 2002;109:43-50
116. Ege MJ. The Hygiene Hypothesis in the Age of the Microbiome. Ann Am Thorac Soc 2017;14(Supl.5):S348-53
117. Martinez de Tejada B. Antibiotic use and misuse during pregnancy and delivery: benefits and risks. International journal of environmental research and public health 2014;11.8: 7993-8009
118. Nahum GG, et al. Antibiotic use in pregnancy and lactation: what is and is not known about teratogenic and toxic risks. Obstet Gynecol 2006;107(5):1120-38
119. McKeever TM, et al. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the West Midlands General Practice Database. Am J Respir Crit Care Med 2002;166:827-32
120. Sariachvili M, et al. Is breast feeding a risk factor for eczema during the first year of life? Pediatr Allergy Immunol 2007;18:410-7
121. Dom S, et al. Pre- and post-natal exposure to antibiotics and the development of eczema, recurrent wheezing and atopic sensitization in children up to the age of 4 years. Clin Exp Allergy 2010;40:1378-87
122. Timm S, et al. Prenatal antibiotics and atopic dermatitis among 18-month-old children in the Danish National Birth Cohort. Clin Exp Allergy 2017;47:929-36
123. Benn CS, et al. Maternal vaginal microflora during pregnancy and the risk of asthma hospitalization and use of antiasthma medication in early childhood. J Allergy Clin Immunol 2002;110:72-7
124. Lapin B, et al. Relationship between prenatal antibiotic use and asthma in at-risk children. Ann Allergy Asthma Immunol 2015;114:203-7
125. Gareau MG. Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol 2014:357-71
126. Desbonnet L, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 2015;48:165-73
127. Köhler-Forsberg O, et al. A nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA Psychiatr 2019;76(3):271-9
128. Köhler O, et al. Infections and exposure to anti-infective agents and the risk of severe mental disorders: a nationwide study. Acta Psychiatr Scand 2017;135(2):97-105
129. Slykerman RF, et al. Exposure to antibiotics in the first 24 months of life and neurocognitive outcomes at 11 years of age. Psychopharmacology 2019;236: 1573-82
130. Prichett LM, et al. Relationship between antibiotic exposure and subsequent mental health disorders in a primary care health system. Brain Behavior & Immunity − Health 2022;21:100430
131. Russell SL, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-7
132. Strzępa A, et al. Oral treatment with enrofloxacin early in life promotes Th2- -mediated immune response in mice. Pharmacol Rep 2016;68:44-50
133. Watanabe J, et al. Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci Biotechnol Biochem 2010;74:358-63
134. Dimmitt RA, et al. Role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J Pediatr Gastroenterol Nutr 2010;51:262-73
135. Räisänen LK, et al. Antibiotic exposures and the development of pediatric autoimmune diseases: a register-based case-control study. Pediatr Res 2023;93(4):1096-104
136. Clausen TD, et al. Broad-Spectrum Antibiotic Treatment and Subsequent Childhood Type 1 Diabetes: A Nationwide Danish Cohort Study. PLoS One 2016;11(8):e0161654
137. Wernroth ML, et al. Early childhood antibiotic treatment for otitis media and other respiratory tract infections is associated with risk of type 1 diabetes: a nationwide register − based study with sibling analysis. Diabetes Care 2020;43:991-9
138. Antvorskov JC, et al. Antibiotic treatment during early childhood and risk of type 1 diabetes in children: A national birth cohort study. Pediatr Diabetes 2020;21(8):1457-64
139. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 2015;17:592-602
140. Wills-Karp M, et al. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 2001;1:69-75
141. Yazdanbakhsh M, et al. Allergy, parasites, and the hygiene hypothesis. Science 2002;296:490-4
142. Rautava S, et al. The hygiene hypothesis of atopic disease – an extended version. J Pediatr Gastroenterol Nutr 2004;38:378-88
143. Rook GA, Brunet LR. Microbes, immunoregulation, and the gut. Gut 2005;54:317-20
144. Penders J, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 2007;56:661-7
145. Shen X, et al. The balance of intestinal Foxp3+ regulatory T cells and Th17 cells and its biological significance. Exp Rev Clin Immunol 2014;10:353-62
146. Horn R. Susceptibility of the Bacteroides fragilis group to newer quinolones and other standard anti-anaerobic agents J Antimicrob Chemother 2001;48:127-30
147. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci 2008;105:16731-6
148. Sokol H, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009;15:1183-9
149. Shaw SY, et al. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. American Journal of Gastroenterology 2010;105:2687-92
150. Hviid A, et al. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011;60:49-54
151. Kronman MP, et al. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 2012;30:e794-e803
152. Virta L, et al. Association of repeated exposure to antibiotics with the development of pediatric Crohn’s disease – a nationwide, register-based finnish case-control study. American Journal of Epidemiology 2012;175:775-84
153. Ortqvist AK, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 2019;68:218-25
154. Hildebrand H, et al. Early-life exposures associated with antibiotic use and risk of subsequent Crohn’s disease. Scand J Gastroenterol 2008;43:961-6
155. WHO: Antimicrobial resistance: global report on surveillance. World Health Organization 2014
156. Hryniewicz W, et al. Rekomendacje postępowania w pozaszpitalnych zakażeniach układu oddechowego. Narodowy Program Ochrony Antybiotyków 2016
157. Dzierżanowska-Fangrat K (red.). Przewodnik antybiotykoterapii. Wydawnictwo Medica Press 2023
158. Hryniewicz W. Zasady leczenia przeciwdrobnoustrojowego. Wiadomości ogólne. W: Interna Szczeklika. Gajewski P (red.). Wydawnictwo Medycyna Praktyczna, Kraków 2017;2354-62
159. Habboush Y, Guzman N. Antibiotic Resistance 2022. W: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing 2023 [Aktualizacja: 23 Czerwca 2023]. StatPearls Publishing 2022
160. Interna Szczeklika 2022/23. Mały podręcznik. Medycyna Praktyczna 2022
161. Willis BH, et al. Comparison of Centor and McIsaac scores in primary care: a meta-analysis over multiple thresholds. Br J Gen Pract 2020;70(693):e245-54
162. Gonzales R, et al. Antibiotic prescribing for adults with colds, upper respiratory tract infections and bronchitis by ambulatory care physicians. JAMA 1997;278:901-4
163. Rzepka A, Mania A. The clinical picture of influenza against other respiratory tract infections in a general practitioner practice. Przegl Epidemiol 2021;75(2):159-174
164. Koniewska A, et al. Zapalenia uszu u dzieci. Pediatria po dyplomie 2019;02
165. Suzuki HG, et al. Clinical practice guidelines for acute otitis media in children: a systematic review and appraisal of European national guidelines. BMJ Open 2020;10(5):e035343
166. Varasso D. Acute Otitis Media: Antimicrobial Treatment or the Observation Option? Current Infectious Disease Reports 2009;11:190-7
167. Dobrzańska A, et al. Pediatria w praktyce lekarza POZ. Standardy Medyczne. Warszawa 2022
168. Pshetizky Y, et al. Acute otitis media – a brief explanation to parents and antibiotic use. Fam Pract 2003;20(4):417-9
169. Hryniewicz W, Holecki M. Rekomendacje diagnostyki, terapii i profilaktyki zakażeń układu moczowego u dorosłych. Narodowy Instytut Leków, Warszawa 2015
170. Bartlett JG. Management of Clostridium difficile infection and other antibiotic-associated diarrhoeas. Eur J Gastroenterol Hepatol 1996;8:1054-61
171. Wiström J, et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother 2001;47(1):43-50
172. Hempel S, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 2012;307:1959-69
173. European Association of Urology. EAU guidelines on Urological Infections 2023. https://uroweb.org/guidelines/urological-infections (dostęp 2023.05.31)
174. Carey MR, et al. Is Non-Steroidal Anti-Inflammatory Therapy Non-Inferior to Antibiotic Therapy in Uncomplicated Urinary Tract Infections: a Systematic Review. J Gen Intern Med 2020;35(6):1821-9
175. Wagenlehner F, et al. Icht interventionelle Studie mit Femannose® N zur Untersuchung von Verträglichkeit, Lebensqualität und Symptomverlauf bei akuter unkomplizierter Harnwegsinfektion. Journal Pharmakol U Ther 2020;1:29
176. Wagenlehner F, et al. Why d-Mannose May Be as Efficient as Antibiotics in the Treatment of Acute Uncomplicated Lower Urinary Tract Infections-Preliminary Considerations and Conclusions from a Non-Interventional Study. Antibiotics (Basel) 2022;11(3):314
177. Domenici L, et al. D-mannose: a promising support for acute urinary tract infections in women. A pilot study. Eur Rev Med Pharmacol Sci 2016;20(13):2920-5
178. Schwenger EM, et al. Probiotics for preventing urinary tract infections in adults and children. Cochrane Database Syst Rev 2015;2015(12):CD008772
179. Xia JY, et al. Consumption of cranberry as adjuvant therapy for urinary tract infections in susceptible populations: A systematic review and meta-analysis with trial sequential analysis. PLoS One 2021;16(9):e0256992
180. Naber KG, et al. Immunoactive prophylaxis of recurrent urinary tract infections: a meta-analysis. Int J Antimicrob Agents 2009;33(2):111-9
181. Perrotta C, et al. Oestrogens for preventing recurrent urinary tract infection in postmenopausal women. Cochrane Database Syst Rev 2008;(2):CD005131
182. De Vita D, et al. Effectiveness of intravesical hyaluronic acid with or without chondroitin sulfate for recurrent bacterial cystitis in adult women: a meta-analysis. Int Urogynecol J 2013;24(4):545-52
183. Fisher H, et al. Continuous low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect Dis 2018;18(9):957-68
184. Sudhoff H, et al. 1,8-Cineol Reduces Mucus-Production in a Novel Human Ex Vivo Model of Late Rhinosinusitis. PLoS ONE 2015;10(7):e0133040
185. Zaremba M. Nowe spojrzenie na działanie, skuteczność i profil bezpieczeństwa 1,8-cyneolu. Medycyna po Dyplomie 2022:11
186. Fal AM, et al. Diagnostyka i leczenie wybranych infekcji oraz stanów zapalnych dróg oddechowych. Wytyczne dla lekarzy POZ. Lekarz POZ 2021;7(5):325-53
187. Nowak G, Nawrot J. Surowce roślinne i związki naturalne stosowane w chorobach układu oddechowego. Herba Polonica 2009;55(4):178-213
188. Fischer J, Dethlefsen U. Efficacy of cyneole in patients suffering from acute bronchitis: a placebo-controlled double-blind trial. Cough 2013;9(1):25
189. A randomised, multi-centre, parallel group, double-blind, placebo- and active-controlled clinical study to assess the efficacy and safety of Octenidine lozenges in the treatment of acute sore throat. EudraCT number: 2012-002876-15. https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-002876-15/results (dostęp 2022.09.08)
190. Dudek B, et al. In Vitro Activity of Octenidine Dihydrochloride-Containing Lozenges against Biofilm-Forming Pathogens of Oral Cavity and Throat. Applied Sciences 2023;13(5):2974